Nonequilibrium thermodynamics and nonlinear kinetics in a cellular signaling switch.
نویسندگان
چکیده
We develop a rigorous nonequilibrium thermodynamics for an open system of nonlinear biochemical reactions responsible for cell signal processing. We show that the quality of the biological switch consisting of a phosphorylation-dephosphorylation cycle, such as those in protein kinase cascade, is controlled by the available intracellular free energy from the adenosine triphosphate (ATP) hydrolysis in vivo: DeltaG=k(B)Tln(([ATP]/K(eq)[ADP]), where K(eq) is the equilibrium constant. The model reveals the correlation between the performance of the switch and the level of DeltaG. The result demonstrates the importance of nonequilibrium thermodynamics in analyzing biological information processing, provides its energetic cost, establishes an interplay between signal transduction and energy metabolism in cells, and suggests a biological function for phosphoenergetics in the ubiquitous phosphorylation signaling.
منابع مشابه
Open-system nonequilibrium steady state: statistical thermodynamics, fluctuations, and chemical oscillations.
Gibbsian equilibrium statistical thermodynamics is the theoretical foundation for isothermal, closed chemical, and biochemical reaction systems. This theory, however, is not applicable to most biochemical reactions in living cells, which exhibit a range of interesting phenomena such as free energy transduction, temporal and spatial complexity, and kinetic proofreading. In this article, a nonequ...
متن کاملSteepest entropy ascent model for far-nonequilibrium thermodynamics: unified implementation of the maximum entropy production principle.
By suitable reformulations, we cast the mathematical frameworks of several well-known different approaches to the description of nonequilibrium dynamics into a unified formulation valid in all these contexts, which extends to such frameworks the concept of steepest entropy ascent (SEA) dynamics introduced by the present author in previous works on quantum thermodynamics. Actually, the present f...
متن کاملThermoreversible associating polymer networks. I. Interplay of thermodynamics, chemical kinetics, and polymer physics.
Hybrid molecular dynamics/Monte Carlo simulations are used to study melts of unentangled, thermoreversibly associating supramolecular polymers. In this first of a series of papers, we describe and validate a model that is effective in separating the effects of thermodynamics and chemical kinetics on the dynamics and mechanics of these systems, and is extensible to arbitrarily nonequilibrium sit...
متن کاملStatistical mechanical theory for steady state systems. VII. Nonlinear theory.
The second entropy theory for nonequilibrium thermodynamics is extended to the nonlinear regime and to systems of mixed parity (even and odd functions of molecular velocities). The steady state phase space probability density is given for systems of mixed parity. The nonlinear transport matrix is obtained and it is shown to yield the analog of the linear Onsager-Casimir reciprocal relations. It...
متن کاملDissipation, generalized free energy, and a self-consistent nonequilibrium thermodynamics of chemically driven open subsystems.
Nonequilibrium thermodynamics of a system situated in a sustained environment with influx and efflux is usually treated as a subsystem in a larger, closed "universe." A question remains with regard to what the minimally required description for the surrounding of such an open driven system is so that its nonequilibrium thermodynamics can be established solely based on the internal stochastic ki...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 94 2 شماره
صفحات -
تاریخ انتشار 2005